UCHEES.RU - помощь студентам и школьникам
По просьбе нашего читателя постараемся описанную тему от 20:21 | 11.02.2017 раскрыть ещё глубже, сегодня рассмотрим Решения уравнений математической физики. Не будем разливать воду, а преступим рассмотрению этого вопроса.
Для решения уравнений математической физики сначала необходимо рассмотреть структуру квазилинейной формулы в частных производных: $\LARGE a \frac {(х, у)(d^2w)}{dx^2 } + 2b(х,у)$ $\LARGE \frac {d^2w}{dxdy}=F (x,y,w dw/dx)$
Для получения общего и правильного решения уравнения исследователи рассматривают характеристическую концепцию обыкновенных дифференциальных уравнений: $\LARGE \frac {dx}{a} = \frac {dy}{b} = \frac {du}{c}$.
Если с=0, то система сводится к одному уравнению $\LARGE \frac {dх}{a}=\frac {dy}{b}$. Если $\LARGE f (х, у)=C$ общий интеграл уравнения, тогда $\LARGE u=w (f (х, у))$ – общее решение.
Сама дифференциальная формула содержит в себе только самую общую информацию об исследуемом процессе. Необходимо заранее получить задание граничных и начальных условий, для общей конкретизации.
На сегодняшний день ученые выделяют три основных типа дифференциальных уравнений, для которых поиск решения имеет существенные различия: уравнения гиперболического, параболического и эллиптического типов.
Большое количество физических процессов и явлений можно описать посредством дифференциальных уравнений в исследуемых частных производных. Это непосредственно связано с тем, что фундаментальные законы современной физики – принципы сохранения – записываются в определениях вторых производных. Способы решения задач математической физики зависят от конкретного типа, которому принадлежит само рассматриваемое уравнение.
Определение 1
Данные методы начали формироваться в 18 веке при изучении колебаний стержней и струны, гидродинамики, задач акустики, аналитической механики (Ж. Даламбер, Л. Эйлер, Ж. Лагранж, П. Лаплас, Д. Бернулли). Идеи математической физики развивались в XIX веке в связи с возникшими задачами в изучении диффузии, теплопроводности, оптики, упругости, нелинейных волновых процессов, электродинамики, теории устойчивости движения (С. Пуассон, Ж. Фурье, О. Коши, К. Гаусс, П. Дирихле, М. В. Остроградский, С. В. Ковалевская, Б. Риман, А. М. Ляпунов, Д. Стокс, Д. Гильберт, В. А. Стеклов).
Замечание 1
Конечно можно много говорить по теме Решения уравнений математической физики, но основную суть мы изложили по этому вопросу. Если вам нужно дополнительная консультация, пожалуйста пишите ваши сообщения нам на почту. Все поступившие вопросы рассматриваются и не остаются без ответа.
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ СТАТЬИ
ПОХОЖИЕ СТАТЬИ