UCHEES.RU - помощь студентам и школьникам

Знайдіть координати вершини параболи : у=(х-2)² +1


В 5:21 поступил вопрос в раздел Математика, который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Знайдіть координати вершини параболи :
у=(х-2)² +1

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Математика". Ваш вопрос звучал следующим образом:

Знайдіть координати вершини параболи :
у=(х-2)² +1

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

У= (х-2)² +1

у= х² - 4 х +4 +1 = х² -4х +5

вершина параболы ищется по формулам

 хв= -в/2а

хв= 4/2*1 = 2 (это абсцисса вершины)

ув= 2² -4*2 +5 =4 - 8 +5 =-4 +5 =1

вершина параболы  А(2;1)


-------------------

Y = x² - 4x + 4 + 1
y = x² - 4x + 5
хв. = 4/2 = 2
yв = (2 - 2)² + 1 = 1
Ответ: (2; 1).



НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Кудрявцева Марина Богуславовна - автор студенческих работ, заработанная сумма за  прошлый месяц 56 823 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ