UCHEES.RU - помощь студентам и школьникам

на растоянии 4см от центра шара проведено сечение. хорда ,удаленная от центра этого...


В 18:38 поступил вопрос в раздел Разное, который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

На растоянии 4см от центра шара проведено сечение. хорда ,удаленная от центра этого сечения на корень5 см стягивает угол 120' . найдите объем шара и площадь его поверхности. за ранее спасибо

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Разное". Ваш вопрос звучал следующим образом:

На растоянии 4см от центра шара проведено сечение. хорда ,удаленная от центра этого сечения на корень5 см стягивает угол 120' . найдите объем шара и площадь его поверхности. за ранее спасибо

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Начнем с плоскости сечения шара. Смотрим на нее как бы сверху - видим круг.
Соединим концы хорды, стягивающей угол 120градусов,  и ее середину с центром окружности, ограничивающей плоскость сечения.
Получим прямоугольный треугольник с острым углом 30 градусов, против которого лежит катет, равный √5
Радиус r, как гипотенуза этого треугольника, равен 2√5
Теперь представим себе сечение, которое проходит перпендикулярно плоскости данного сечения.

Диаметр сечения, которое нам было дано, является теперь хордой, расстояние от центра которой до центра шара равно 4 см. Рассмотрим треугольник, который получится, когда мы соединим центр шара и конец этой хорды.
Радиус R шара здесь - гипотенуза прямоугольного треугольника, катеты которого нам известны.
R²= (2√5)²+4²=20+16=36
R=√36=6 cм
Площадь поверхности сферы равна учетверенной площади большого круга:
S=4 π R²
S=4 π *36=144 см²
Объем шарав полтора раза меньше, чем объем описанного вокруг него цилиндра.
V=4/3 π R³
V=4π216:3=288π см³


-------------------

Изобразим круг, который является сечением шара. В нем покажем центр сечения О1, хорду АВ, отрезок О1Д, являющийся расстоянием от О1 до хорды АВ,. Хорда стягивает угол в 120⁰, значит, центральный угол АО1В равен 120⁰. О1Д  делит хорду пополам.

Рассмотрим прямоугольный ΔАДО1. В нём угол АДО1 = 90⁰, угол ДО1А = 120⁰:2 = 60⁰, т.к высота равнобедренного ΔАО1В является и биссектрисой. ОА = r - радиус рассматриваемого кругового сечения является гипотенузой в ΔАДО1.

АО1 = ДО1: cos 60⁰ = √5: 0,5 = 2√5(см).

Осталось найти радиус шара.

Изобразим шар с центром в точке О, расстояние ОО1 до сечения задано (ОО1 = 4 см) проведём след сечения  - прямую АО1В параллельную диаметру шара. Рассмотрим прямоугольный ΔАОО1, в котором биссектрисой является радиус шара R=АО, катетами ОО1 = 4см и АО1 = 2√5см.

Используем иеорему Пифагора: R = √(4² +(2√5)²) = √(16 +20) = √36 = 6(см)

Объём шара вычисляется по формуле

V = 4π·R³/3 = 4π·6³/3 = 288π(см³)

Площадь поверхности шара вычислим

S = 4π·R² = 4π·6² = 144π(см²)

 



НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Мухина Анжиолетта Николаевна - автор студенческих работ, заработанная сумма за  прошлый месяц 68 700 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ