UCHEES.RU - помощь студентам и школьникам
В 6:40 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.
Определите, для каких правильных n-угольников сторона меньше диаметра вписанной окружности.Пожалуйста с решением.
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом: Определите, для каких правильных n-угольников сторона меньше диаметра вписанной окружности.Пожалуйста с решением.
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
Если соединить вершины правильного многоугольника с его центром, получим n равнобедренных треугольников, один из которых на рисунке.
Угол при вершине О равен 360°/n, значит α = 180°/n.
tg α = (a/2) / r
r = a / (2tgα), где r - радиус вписанной окружности, а ее диаметр
d = a / tgα
a < d
a < a / tgα
1 / tgα > 1
tgα < 1, ⇒ α < 45°
180°/n < 45°
(180° - 45°·n) / n < 0
(4 - n) / n < 0
n ∈ ( - ∞ ; 0) ∪ (4 ; + ∞)
Так как n - количество сторон многоугольника, n > 4.
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ