UCHEES.RU - помощь студентам и школьникам
В 16:45 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.
1) В равнобедренном треугольнике АВС длина основания АС равна 24, а cosC = 0,6. Найдите площадь треугольника ABC.
2) В равнобедренном треугольнике АВС с основанием АС сторона АВ равна 50, а sinС = 0,96. Найдите площадь треугольника АВС.
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом: 1) В равнобедренном треугольнике АВС длина основания АС равна 24, а cosC = 0,6. Найдите площадь треугольника ABC.
2) В равнобедренном треугольнике АВС с основанием АС сторона АВ равна 50, а sinС = 0,96. Найдите площадь треугольника АВС.
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
1) В равнобедренном треугольнике АВС длина основания АС равна 24, а cosC = 0,6. Найдите площадь треугольника ABC.
SinC=√(1-CosC) или SinC=√(1-0,36)=0,8.
В равнобедренном треугольнике АВС высота ВН является и медианой.
CosC=НС/BC, отсюда ВС=НС/CosC или ВС=12/0,6=20.
Sabc=(1/2)*AC*BC*SinC или Sabc=(1/2)*24*20*0,8=192 ед².
2) В равнобедренном треугольнике АВС с основанием АС сторона АВ равна 50, а sinС = 0,96. Найдите площадь треугольника АВС.
АВ=ВС (стороны равнобедренного треугольника
SinC=BH/ВС, отсюда ВН=ВС*SinC или ВН=50*0,96=48.
По Пифагору НС=√(ВС²-ВН²)=√(50²-48²)=14. АС=2*НС = 28.
Sabc=(1/2)*AC*BH = (1/2)*28*48=672 ед².
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ