UCHEES.RU - помощь студентам и школьникам
В 21:36 поступил вопрос в раздел Алгебра, который вызвал затруднения у обучающегося.
На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, сумма которых делится на 3.
а) Может ли сумма всех оставшихся на доске чисел равняться 11, если сначала по одному разу были выписаны числа 2, 3, 4, 5, 6, 7, 8, 9, 10 и 11?
б) Может ли на доске остаться ровно два числа, разность между которыми равна 24, если сначала по одному разу были написаны все натуральные числа от 100 до 151 включительно?
в) Известно, что на доске осталось ровно два числа, а сначала по одному разу были написаны все натуральные числа от 100 до 151 включительно. Какое наибольшее значение может получиться, если поделить одно из оставшихся чисел на второе из них?
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Алгебра". Ваш вопрос звучал следующим образом: На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, сумма которых делится на 3.
а) Может ли сумма всех оставшихся на доске чисел равняться 11, если сначала по одному разу были выписаны числа 2, 3, 4, 5, 6, 7, 8, 9, 10 и 11?
б) Может ли на доске остаться ровно два числа, разность между которыми равна 24, если сначала по одному разу были написаны все натуральные числа от 100 до 151 включительно?
в) Известно, что на доске осталось ровно два числа, а сначала по одному разу были написаны все натуральные числа от 100 до 151 включительно. Какое наибольшее значение может получиться, если поделить одно из оставшихся чисел на второе из них?
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
А) Да, например, можно стереть пары 2-10, 4-5, 6-9, 7-11. Останутся два числа: 3 и 8, сумма которых равна 11.
б) Нет. Заметим, что стирать можно пары, в которых одно число даёт остаток 1 при делении на 3, а другое — остаток 2 при делении на 3 (пары первого типа), или пары чисел, делящихся на 3 (пары второго типа). В исходной последовательности 18 чисел с остатком 1, 17 с остатком 2 и 17 делящихся на 3. Тогда, чтобы осталось два числа, надо стереть 17 пар первого типа и 8 пар второго типа, останется одночисло, дающее остаток 1 при делении на 3, и одно число, делящееся на 4. Их разность не может делиться на 3.
в) Мы знаем остатки чисел, которые должны остаться. Максимальное чистное будет, если будем делить максимальное число с остатком 1 на минимальное с остатком 0 или максимальное с остатком 0 на минимальное с остатком 1. Посмотрим, что из этого больше.
Макс(0) = 150, мин(0) = 102; макс(1) = 151, мин(1) = 100. 150/100 = 1,5; 151/102 = 1,48... < 1.5. Значит, чтобы частное было максимальным, нужно оставить числа 150 и 100.
Вот как это сделать: стираем пары вида (6n, 6n + 3) для n от 17 до 24 и пары вида (3n + 2, 3n + 4) для n от 33 до 49
Ответ. а) да, б) нет, в) 1,5.
НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:
Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.
Осипова Лайма Макаровна - автор студенческих работ, заработанная сумма за прошлый месяц 61 777 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ