UCHEES.RU - помощь студентам и школьникам
В 5:24 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.
Известно, что точки A и B находятся на единичной полуокружности.
Если даны значения одной из координат этих точек, какие возможны значения другой координаты?
1. A(6;...)
1
−6
6
0
такая точка не может находиться на единичной полуокружности
−1
2. B(−3√2;...)
−12
3√2
12
2√2
−1
1
такая точка не может находиться на единичной полуокружности
−3√2
0
−2√2
пожалуйста решите ,срочно
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом: Известно, что точки A и B находятся на единичной полуокружности.
Если даны значения одной из координат этих точек, какие возможны значения другой координаты?
1. A(6;...)
1
−6
6
0
такая точка не может находиться на единичной полуокружности
−1
2. B(−3√2;...)
−12
3√2
12
2√2
−1
1
такая точка не может находиться на единичной полуокружности
−3√2
0
−2√2
пожалуйста решите ,срочно
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
Единичная окружность это окружность с центовом в начале координат и радиусом 1.
Ответ в номере 1: такая точка не может находиться на единичной полуокружности. Т.к. 6 больше 1
Ответ в номере 2: -3√2 так же больше меньше 1, значит так же на может находиться на единичной полуокружности.
Примером точек, находящихся на окружности служит тригонометрический круг
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ