UCHEES.RU - помощь студентам и школьникам

*На гладком столе лежит доска массой M = 500 г, ** краю которой покоится маленькая шайба...


В 5:003 поступил вопрос в раздел Физика, который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

*На гладком столе лежит доска массой M = 500 г, на краю которой покоится маленькая шайба массой m = 110 г (см. рисунок). Коэффициент трения между шайбой и доской равен μ = 0,1. Какую максимальную по модулю скорость vmax можно сообщить шайбе, чтобы пройдя по доске путь до уступа и обратно, она осталась на доске? Длина доски до уступа равна l = 1 м. Удар шайбы об уступ считайте абсолютно упругим. Ускорение свободного падения примите равным g = 10 м/с2. Ответ округлите до двух знаков после запятой.

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Физика". Ваш вопрос звучал следующим образом:

*На гладком столе лежит доска массой M = 500 г, на краю которой покоится маленькая шайба массой m = 110 г (см. рисунок). Коэффициент трения между шайбой и доской равен μ = 0,1. Какую максимальную по модулю скорость vmax можно сообщить шайбе, чтобы пройдя по доске путь до уступа и обратно, она осталась на доске? Длина доски до уступа равна l = 1 м. Удар шайбы об уступ считайте абсолютно упругим. Ускорение свободного падения примите равным g = 10 м/с2. Ответ округлите до двух знаков после запятой.

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Рассмотрим абсолютно упругое соударение двух тел:

MV²/2 + mv²/2 = MU²/2 + mu²/2 ,
где V и U – ЗНАКОВЫЕ ПРОЕКЦИИ скоростей большого тела до и после соударения, а v и u – знаковые проекции скоростей до и после соударения малого тела.

MV + mv = MU + mu ;

M ( V² – U² ) =  m ( u² – v² ) ;

M(V–U) = m(u–v) ;

V + U = u + v ;

v–V = –(u–U) ;

|v–V| = |u–U| – итак, мы пришли к замечательному выводу: модуль скорости малого тела относительно большого ТОЧНО сохраняется.

К этому же выводу можно прийти и простыми рассуждениями, если перейти временно в инерциальную систему центра масс СЦМ. В СЦМ общий импульс равен нулю, т.е. модули скоростей двухчастной системы пропорциональны друг другу, а энергия сохраняется. Иначе говоря, энергия, пропорциональная сумме квадратов скоростей частей системы, а значит и просто – пропорциональная квадрату скорости любой из частей системы сохраняется! Стало быть, после упругого соударения должны сохраниться и модули скоростей частей системы в СЦМ. А раз скорости относительно СЦМ после соударения сохраняются по модулю и всё так же остаются противоположными, то значит их скорость относительно друг друга по модулю – ТОЧНО сохраняется.

Итак, после абсолютно упругого удара шайбы об уступ: скорости, как доски, так и шайбы – скачкообразно изменятся, ОДНАКО скорость шайбы ОТНОСИТЕЛЬНО ДОСКИ ТОЧНО сохранится по модулю и развернётся.

Будем считать, что движение шайбы всё время происходит в неинерциальной системе отсчёта, связанной с доской.

Для этого разберёмся, как параметры лабораторной системы (ЛСО) – связаны с нашей неинерциальной. В ЛСО движение шайбы происходит с ускорением a = –μg , при этом доска движется с противоположным ускорением [m/M]μg .

Таким образом, в неинерциальной СО, связанной с доской (далее СОД) ускорение шайбы: v' = –μg(1+m/M) ;

Когда скорость шайбы в СОД мгновенно разворачивается, сохраняясь по модулю – одновременно так же мгновенно разворачивается и ускорение в СОД.

Таким образом, в СОД – шайба всё время движется с одним и тем же ускорением v' = –μg(1+m/M), всегда направленным против скорости, которая изменяется без скачков по модулю (скачок отскока мы «сшили»).

В таком случае, поскольку всё происходит на длине S, не более чем 2L – справедлива кинематическая связь:

v²–0² = 2S|v'|< 2*2L|v'| ,     разность квадратов краевых скоростей равна удвоенному произведению ускорения и пути.

v² < 4Lμg (1+m/M) ;

v < 2√[Lμg(1+m/M)] ;

vmax = 2√[Lμg(1+m/M)] ≈ 2√[0.1g(1+110/500)] ≈ 2√[0.1g(61/50)] ≈
≈ 2√[12.2g/100] ≈ 2√[121/100] ≈ 2*11/10 ≈ 2.2 м/с ;


Хотя, вообще-то если посчитать на калькуляторе, в соответствии с обоими требованиями «до двух знаков после запятой» и «g = 10 м/с2», то:

vmax = 2√[Lμg(1+m/M)] ≈ 2√[1+110/500] ≈ 2.21 м/с .


-------------------



НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Уварова Юнона Мироновна - автор студенческих работ, заработанная сумма за  прошлый месяц 64 600 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ