UCHEES.RU - помощь студентам и школьникам

Дано натуральное число n. Последовательность натуральных чисел a1, a2, …, ak (k≥n) назовем n-универсальной, если из нее можно получить


В 17:08 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Дано натуральное число n. Последовательность натуральных чисел a1, a2, …, ak (k≥n) назовем n-универсальной, если из нее можно получить

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш вопрос звучал следующим образом: Дано натуральное число n. Последовательность натуральных чисел a1, a2, …, ak (k≥n) назовем n-универсальной, если из нее можно получить

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

а) Нужный пример дает последовательность из n подряд идущих блоков (1, 2, 3, …, n); i-ю цифру любой перестановки можно взять из i-го блока.
б) Выпишем n-1 раз подряд блок (1, 2, 3, …, n) и затем 1. В этой последовательности n2-n+1 членов. Проверим, что она n-универсальна. В самом деле, если в перестановке (k1, k2, …, kn) хоть одна пара соседних чисел kj, kj+1 стоит в порядке возрастания, то их можно взять из одного блока (1, 2, 3, …, n) (j-го по порядку), при этом последняя 1 даже не понадобится. Если это не так, то перестановка совпадает с
(n, n-1, …, 2, 1); тогда из j-го блока нужно взять n-j+1, и пригодится последняя 1.
в) Докажем утверждение методом математической индукции. Для n=1 утверждение, очевидно, выполнено, поскольку n(n+1)/2=1, и любая 1-универсальная последовательность должна содержать, по меньшей мере, 1 член.
Пусть теперь утверждение выполнено для всех натуральных чисел, меньших n. Рассмотрим произвольную n-универсальную последовательность. Отметим для каждого числа k (от 1 до n) первое его вхождение в нее. Одно из отмеченных чисел встречается на n-ом месте от начала или даже дальше. Пусть для определенности таким числом будет n. Перед ним стоит по крайней мере n-1 чисел. После него стоит последовательность, которая должна быть (n-1)-универсальной для перестановок чисел 1, 2, …, n-1. По индуктивному предположению ее длина не меньше, чем
(n-1)((n-1)+1)/2=n(n-1)/2. Поэтому длина рассматриваемой n-универсальной последовательности не меньше, чем
n+n(n-1)/2=n(n+1)/2. Ввиду произвольности рассматриваемой последовательности, утверждение доказано.


НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Игнатова Елена Игоревна - автор студенческих работ, заработанная сумма за  прошлый месяц 64 600 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ