UCHEES.RU - помощь студентам и школьникам

Докажите, что среди любых десяти последовательных натуральных чисел найдется число, взаимно простое с остальными.


В 13:03 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Докажите, что среди любых десяти последовательных натуральных чисел найдется число, взаимно простое с остальными.

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш вопрос звучал следующим образом: Докажите, что среди любых десяти последовательных натуральных чисел найдется число, взаимно простое с остальными.

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Для начала заметим: числа m и n имеют одинаковый остаток при делении на k тогда и только тогда, когда разность m-n делится на k. Покажем, что среди 10 последовательных чисел найдется такое, которое не делится на числа 2, 3, 5, 7. Действительно, среди этих чисел пять делятся на 2. Оставшиеся пять нечетных чисел можем записать как n, n+2, n+4, n+6, n+8, где n – самое маленькое из них. Они разбиваются на три группы чисел, имеющих одинаковые остатки при делении на 3: {n, n+6}, {n+2, n+8} и {n+4}, поэтому среди них не более двух делятся на 3. При делении n, n+2, n+4, n+6, n+8 на 5 получается пять различных остатков, поэтому среди них ровно одно делится на 5. Аналогично, среди этих чисел имеется не более одного, которое делится на 7. Таким образом из исходного набора исключается не более 9 чисел, оставшееся число не делится на 2, 3, 5 и 7. Оно и будет удовлетворять условию задачи. Действительно, пусть это число a и оно имеет общий делитель d>1 с некоторым числом b из указанного набора. Тогда модуль разности a и b делится на d (и на все простые делители числа d). Но это невозможно, поскольку указанный модуль не превосходит 9, а все простые числа, меньшие 9, как уже было показано, не являются делителями числа a, а значит и d.


НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Красильникова София Фроловна - автор студенческих работ, заработанная сумма за  прошлый месяц 58 300 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ