UCHEES.RU - помощь студентам и школьникам

В городе "Многообразие" живут 2014 жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более


В 12:58 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

В городе "Многообразие" живут 2014 жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш вопрос звучал следующим образом: В городе "Многообразие" живут 2014 жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Пусть A, B и C — какие-то три жителя города.
Ясно, что возможен случай, когда все они дружат между собой; возможно также, что один из них (скажем, A) не дружит ни с B, ни с C, а B и C дружат между собой: тогда для того, чтобы A, B и C все подружились, достаточно, чтобы A "начал новую жизнь".
Из примечания следует, что два других случая: когда все три жителя A, B и C между собой враждуют и когда один житель, — например, тот же A, — дружит с B и с C, а те враждуют между собой, уже невозможны.
Описанное строение "отношения дружбы" между любыми тремя лицами A, B и C доказывает, что в пределах всего города это отношение можно описать весьма просто: в городе имеются две группы жителей (две партии M и N, такие, что все жители принадлежат либо к одной, либо к другой партии (но никогда — к обеим сразу), причём каждые два члена одной партии между собой дружат, а жители, принадлежащие к разным партиям, обязательно враждуют. В самом деле, присоединим к нашим трем жителям A, B и C города "Многообразие" еще одного жителя D; в таком случае, если A и B дружат между собой и D дружит хоть с одним из них, то он дружит и со вторым — и, значит, принадлежит к партии, в которую входят и A, и B; если же A и B между собой враждуют, то D дружит лишь с одним из них (но с одним дружит непременно!). Это рассуждение обеспечивает возможность разбиения четвёрки жителей A, B, C и D на две партии M и N (впрочем, одна из этих партий может быть и "пустой": так будет, если все жители A, B, C и D дружат между собой). Поступая так же и дальше, т. е. последовательно присоединяя к уже рассмотренным жителям города по одному человеку, мы докажем возможность разбиения на две партии всех 2014 жителей города.
Теперь доказательство утверждения задачи не представляет уже никакого труда. Если все жители города дружат между собой, то нам и доказывать нечего; если же ни одна из партий M и N не "пуста", то мы предложим каждый день одному из участников партии M "начинать новую жизнь", т. е., попросту, переходить в партию N. Если в партии M имеется k человек, то все жители города смогут подружиться за k дней.


НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Князева Властилина Робертовна - автор студенческих работ, заработанная сумма за  прошлый месяц 49 978 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ