UCHEES.RU - помощь студентам и школьникам
В 7:17 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.
Окружность задана уравнением (х-2)^2+(у+1)^2=25.Напишите уравнение прямой,проходящей через её центр и параллельной оси абсцисс
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом: Окружность задана уравнением (х-2)^2+(у+1)^2=25.Напишите уравнение прямой,проходящей через её центр и параллельной оси абсцисс
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
В уравнение круга x^2+y^2=R^2 координаты центра окружности (0;0).
x-2 говорит, что координата центра окружности по оси абцисс (х) смещена на 2.
А y+1 говорит о смешении координаты по оси ординат (y) на -1.
Значит, координата центра данной окружности (2;-1).
Уравнение прямой, параллельной оси абцисс может быть уравнение, в котором значение y постоянно, то есть не зависит от х.
Так как прямая проходит через центр окружности, то она имеет вид:
y=-1
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ