UCHEES.RU - помощь студентам и школьникам
В 22:50 поступил вопрос в раздел Математика, который вызвал затруднения у обучающегося.
Точка K равноудалена от всех вершин треугольника ABC и OK перпендикулярно (ABC). O принадлежит ABC.найдите AK.если AB=BC,AC=4см, BD=4см, BD перпендикулярно AC, D принадлежит AC.OK=6см
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Математика". Ваш вопрос звучал следующим образом:  Точка K равноудалена от всех вершин треугольника ABC и OK перпендикулярно (ABC). O принадлежит ABC.найдите AK.если AB=BC,AC=4см, BD=4см, BD перпендикулярно AC, D принадлежит AC.OK=6см
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
Так как АВ=ВС это равнобедренный  треугольник 
BD- высота треугольника которая делит основание по полам AD=DC=2 см 
Так как BD=4 а AD=2 можна найти AB за теоремой Пифагора 
AB=16+4=20=2 корень из 5 
AB=BC=2 корень из 5 
КО-перпендикуляр АК-наклонная AO-проекция и в то же время радиус описанного круга 
OK=6 
Найдем AO-радиус 
R=abc/4S 
R=2 корень из 5*2 корень из 5*4/4*8=2.5 см 
S=1/2*h*b(b-основание) 
h=BD=4 см 
S=1/2*4*4=8 
Найдем AK за теоремой Пифагора 
AK=(2,5)^2+36=6.25+36=корень из 42.25
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ