UCHEES.RU - помощь студентам и школьникам

Какие из сле­ду­ю­щих утвер­жде­ний верны? 1) Около лю­бо­го ромба можно опи­сать...


В 9:24 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Какие из сле­ду­ю­щих утвер­жде­ний верны?

1) Около лю­бо­го ромба можно опи­сать окружность.
2) В любой тре­уголь­ник можно впи­сать не менее одной окружности.
3) Цен­тром окружности, опи­сан­ной около треугольника, яв­ля­ет­ся точка пе­ре­се­че­ния биссектрис.
4) Цен­тром окружности, впи­сан­ной в треугольник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сторонам.

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом:

Какие из сле­ду­ю­щих утвер­жде­ний верны?

1) Около лю­бо­го ромба можно опи­сать окружность.
2) В любой тре­уголь­ник можно впи­сать не менее одной окружности.
3) Цен­тром окружности, опи­сан­ной около треугольника, яв­ля­ет­ся точка пе­ре­се­че­ния биссектрис.
4) Цен­тром окружности, впи­сан­ной в треугольник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сторонам.

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

1) Около лю­бо­го ромба можно опи­сать окружность.

Неверно, так как окружность можно описать около четырехугольника, сумма противолежащих углов которого равна 180°, а в ромбе противолежащие углы равны, и, если они не прямые (частный случай), то их сумма не равна 180°.

2) В любой тре­уголь­ник можно впи­сать не менее одной окружности.

Неверно. В любой треугольник можно вписать единственную окружность.

3) Цен­тром окружности, опи­сан­ной около треугольника, яв­ля­ет­ся точка пе­ре­се­че­ния биссектрис.

Неверно. Центр описанной около треугольника окружности - точка пересечения серединных перпендикуляров к его сторонам.

4) Цен­тром окружности, впи­сан­ной в треугольник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сторонам.

Неверно. Центр вписанной в треугольник окружности - точка пересечения его биссектрис.

Ответ: все утверждения неверны.


-------------------



НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Маркова Галина Кирилловна - автор студенческих работ, заработанная сумма за  прошлый месяц 86 400 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ