UCHEES.RU - помощь студентам и школьникам
В 13:11 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.
Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Геометрия". Ваш вопрос звучал следующим образом: Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
Пусть дана прямая a и точка C, не лежащая на этой прямой. Рассмотрим точки A и B, лежащие на прямой a. Точки A,B и C не лежат на одной прямой а значит, существует единственная плоскость α, проходящая через эти точки. Таким образом, существует единственная плоскость α, проходящая через прямую a и точку C.
Докажем, что любая прямая b, пересекающая прямую a и проходящая через точку C, также лежит в плоскости α. Действительно, пусть прямые a и b пересекаются в точке K. Прямая a лежит в плоскости α, тогда точка K на этой прямой также лежит в α. Тогда прямая b проходит через точки K и C, лежащие в плоскости α, а значит, она целиком лежит в этой плоскости, что и требовалось.
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
РАЗДЕЛЫ САЙТА
Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
ЗАДАТЬ ВОПРОС
НОВЫЕ ОТВЕТЫ
ПОХОЖИЕ ВОПРОСЫ