UCHEES.RU - помощь студентам и школьникам

В турнире по шахматам принимают участие мальчики и девочки. За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка,


В 2:43 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

В турнире по шахматам принимают участие мальчики и девочки. За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка,

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш вопрос звучал следующим образом: В турнире по шахматам принимают участие мальчики и девочки. За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка,

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

Если n человек проводят турнир и каждый играет с каждым одну партию, то будет сыграно (n∙(n - 1))/2 партий. В данной задаче каждый играет с каждым по 2 партии, поэтому будет сыграно n(n – 1) партий, а так как в каждой партии разыгрывается одно очко, то будет получено n(n – 1) очков.
а) Три девочки провели между собою 3 ∙2 = 6 партий и набрали 6 очков. Если бы они выиграли все 3∙2∙5 = 30 партий у мальчиков, то набрали бы ещё 30 очков. Тогда наибольшее количество очков, которое в сумме могли набрать девочки, равно 6 + 30 = 36.
б) Все 9 участников сыграют9 ∙8 =72партии и наберут 72 очка.
в) Пусть в турнире играли 1 девочка и 9 мальчиков. В лучшем случае девочка выиграет все 9∙2= 18 партий у мальчиков и наберёт 18 очков. Мальчики в играх между собою сыграют 9∙8= 72 партии и наберут 72 очка — ровно в 4 раза больше, чем сумма очков девочки, что соответствует условиям задачи. Это означает, что в турнире могла играть одна девочка.Выясним, могло ли девочек быть больше.
Пусть теперь будет 2 девочки и 18 мальчиков. В лучшем случае девочки выиграют все 2∙18∙2= 72 партии у мальчиков и наберут 72 очка. Да ещё в 2-х играх между собою девочки наберут 2 очка. Всего девочки наберут 72 + 2 = 74 очка. Мальчики в играх между собою сыграют 18∙17 =306 партий и наберут 306 очков, 306 : 74> 4, что не соответствует условиям задачи. Это означает, что в турнире не могли играть две девочки.
Дальше с увеличением числа девочек отношение числа очков, набранных мальчиками, к числу очков, набранных девочками, будет увеличиваться. Докажем это.
Пусть в турнире игралиn девочек и 9n мальчиков. В лучшем случае девочки выиграют все n∙9n∙2= 18n^2 партий у мальчиков и наберут 18n^2 очков. Да ещё в n∙(n - 1)= n^2-n партиях между собою девочки наберут n^2-n очков.  Всего они наберут 18n^2 +n^2-n = 19n^2-n очков. В этом случае мальчики в играх между собою сыграют 9n∙(9n-1) =
= 81n^2-9nпартий и наберут 81n^2-9n очков. Так как при любом n ≥ 2 (81n^2- 9n)/(19n^2- n)=(81n - 9)/(19n - 1)=(4(19n -1))/(19n - 1) +(5n -5)/(19n - 1)=4+(5n -5)/(19n - 1)> 4, то в  турнире не могли играть больше одной девочки.
Следовательно, могла быть только 1 девочка.
Ответ. а) 36; б) 72; в) 1.


НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Фокина Келен Евсеевна - автор студенческих работ, заработанная сумма за  прошлый месяц 91 600 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

РАЗДЕЛЫ САЙТА

Ответы на вопросы - в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи - раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания - цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

ЗАДАТЬ ВОПРОС

НОВЫЕ ОТВЕТЫ

ПОХОЖИЕ ВОПРОСЫ